SUBJECT: MATHS

Statement of INTENT:

At Broadwater we aim to teach the mathematics national curriculum in a creative and meaningful way. We provide opportunities for pupils to use their skills creatively through problem solving and investigations which encourage curiosity, interest and fascination. We enable our pupils to become fluent in the fundamentals of mathematics: number bonds, multiplication tables and mental calculations with regular opportunities provided to consolidate, practice and apply these skills to reasoning scenarios.

Developing a strong grounding in

 number is essential so that all children develop the necessary building blocks to excel mathematically. Children should be able to count confidently, develop a deep understanding of the numbers to 10 , the relationships between them and the patterns within those numbers. By providing frequent and varied opportunities to build and apply this understanding - such as using manipulatives, including small pebbles and tens frames for organising counting - children will develop a secure base of knowledge and vocabulary from which mastery of mathematics is built. In addition, it is important that the curriculum includes rich opportunities for children to develop their spatial reasoning skills across all areas of mathematics including shape, space and measures. It is important that children develop positive attitudes and interests in mathematics, look for patterns and relationships, spot connections, 'have a go', talk to adults and peers about what they notice and not be afraid to make mistakes.The principal focus of mathematics teaching in key stage 1 is to ensure that pupils develop confidence and mental fluency with whole numbers, counting and place value. This should involve working with numerals, words and the four operations, including with practical resources [for example, concrete objects and measuring tools]. At this stage, pupils should develop their ability to recognise, describe, draw, compare and sort different shapes and use the related vocabulary. Teaching should also involve using a range of measures to describe and compare different quantities such as length, mass, capacity/volume, time and money. By the end of year 2, pupils should know the number bonds to 20 and be precise in using and understanding place value. An emphasis on practice at this early stage will aid fluency. Pupils should read and spell mathematical vocabulary, at a level consistent with their increasing word reading and spelling knowledge at key stage

Lower Key Stage Two
The principal focus of mathematics teaching in lower key stage 2 is to ensure that pupils become increasingly fluent with whole numbers and the four operations, including number facts and the concept of place value. This should ensure that pupils develop efficient written and mental methods and perform calculations accurately with increasingly large whole numbers. At this stage, pupils should develop their ability to solve a range of problems, including with simple fractions and decimal place value. Teaching should also ensure that pupils draw with increasing accuracy and develop mathematical reasoning so they can analyse shapes and their properties, and confidently describe the relationships between them. It should ensure that they can use measuring instruments with accuracy and make connections between measure and number. By the end of year 4, pupils should have memorised their multiplication tables up to and including the 12 multiplication table and show precision and fluency in their work. Pupils should read and spell mathematical vocabulary correctly and confidently, using their growing word reading knowledge and their knowledge of spelling.
Upper Key Stage Two
The principal focus of mathematics teaching in upper key stage 2 is to ensure that pupils extend their understanding of the number system and place value to include larger integers. This should develop the connections that pupils make between multiplication and division with fractions, decimals, percentages and ratio. At this stage, pupils should develop their ability to solve a wider range of problems, including increasingly complex properties of numbers and arithmetic, and problems demanding efficient written and mental methods of calculation. With this foundation in arithmetic, pupils are introduced to the language of algebra as a means for solving a variety of problems. Teaching in geometry and measures should consolidate and extend knowledge developed in number. Teaching should also ensure that pupils classify shapes with increasingly complex geometric properties and that they learn the vocabulary they need to describe them. By the end of year 6, pupils should be fluent in written methods for all four operations, including long multiplication and division, and in working with fractions, decimals and percentages. Pupils should read, spell and pronounce mathematical vocabulary correctly.

	EYFS	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	Count objects, actions and sounds Is able to subitise (recognise how many objects there are in a small group without counting) Is able to link the number symbol (numeral) with its cardinal number value Can count beyond ten Is able to compare numbers Understands the 'one more than/ one less than' relationship between consecutive numbers Is able to explore the composition of numbers to 10 Has a deep understanding of number to 10 , including the composition of each number (ELG) Is able to subitise (recognise quantities without counting) up to 5 (ELG) Can compare quantities up to 10 in different contexts, recognising when one quantity is greater than, less than or the same as the other quantity (ELG) Is able to explore and represent patterns within numbers up to	Count to and across 100, forwards and backwards, beginning with 0 or 1 , or from any given number. Count and read numbers to 100 in numerals. Count and write numbers to 100 in numerals. Count in multiples of twos, fives and tens from 0 Identify one more and one less of a given number Identify and represent numbers using objects and pictorial representations including the number line, and use the language of: equal to, more than, less than (fewer), most, least Read and write numbers from 1 to 20 in numerals Read and write numbers from 1 to 20 in words Count in twos, fives and tens to solve problems e.g. count the number of chairs in a diagram when the chairs are organised in 7 rows of 5 by counting in fives Partition and combine numbers using apparatus if required e.g. partition 76 into tens and ones; combine 6 tens and 4 ones	Count in steps of 2, 3 , and 5 from 0 , and in tens from any number, forward and backward Recognise the place value of each digit in a two-digit number (tens, ones) Identify, represent and estimate numbers using different representations, including the number line Compare and order numbers from 0 up to 100; use <, > and = signs Read and write numbers to at least 100 in numerals Read and write numbers to at least 100 in words Use place value and number facts to solve problems Partition two-digit numbers into different combinations of tens and ones using apparatus if needed e.g. 23 is the same as 2 tens and 3 ones which is the same as 1 ten and 13 ones	Count from 0 in multiples of $4,8,50$ and 100 ; find 10 or 100 more or less than a given number Recognise the place value of each digit in a three-digit number (hundreds, tens, ones) Compare and order numbers up to 1000 Identify, represent and estimate numbers using different representations Read and write numbers up to 1000 in numerals Read and write numbers up to 1000 in words Solve number problems and practical problems involving these ideas	Count in multiples of 6 , 7, 9, 25 and 1000 Find 1000 more or less than a given number Count backwards through zero to include negative numbers Recognise the place value of each digit in a four-digit number (thousands, hundreds, tens, and ones) Order and compare numbers beyond 1000 Identify, represent and estimate numbers using different representations including measures Round any number to the nearest 10, 100 or 1000 Solve number and practical problems that involve all of the above and with increasingly large positive numbers Read Roman numerals to 100 (I to C) and know that over time, the numeral system changed to include the concept of zero and place value	Read, write, order and compare numbers to at least 1000000 and determine the value of each digit e.g. what is the value of the ' 7 ' in 276,541 ? Find the difference between the largest and smallest whole numbers that can be made from using three digits Count forwards or backwards in steps of powers of 10 for any given number up to 1 000000 Interpret negative numbers in context, count forwards and backwards with positive and negative whole numbers, including through zero Round any number up to 1000000 to the nearest 10, 100, 1000, 10000 and 100000 Solve number problems and practical problems that involve ordering and comparing numbers to 1000 000, counting forwards or backwards in steps, interpreting negative numbers and rounding Read Roman numerals to 1000 (M) and recognise years	Read, write, order and compare numbers up to 10 000000 and determine the value of each digit Round any whole number to a required degree of accuracy Use negative numbers in context, and calculate intervals across zero Solve number and practical problems that involve ordering and comparing numbers to 10000000 , rounding to a required degree of accuracy, using negative numbers and calculating intervals across zero Demonstrate an understanding of place value including decimals e.g. $28.13=28+$? + 0.03

	EYFS	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	Automatically recalls the number bonds for numbers $0-5$ and some to 10 Automatically recalls (without reference to rhymes, counting or other aids) number bonds up to 5 (including subtraction facts) and some number bonds to 10 , including double facts (ELG)	Read and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs Write mathematical statements involving addition (+), subtraction (-) and equals (=) signs Demonstrate an understanding of the commutative law (e.g. $3+2$ $=5$, therefore $2+3=5$) Demonstrate an understanding of inverse relationships involving addition and subtraction (e.g. if $3+2=5$, then $5-2$ =3) Recall at least four of the six number bonds for 10 and reason about associated facts (e.g. $6+4=$ 10 , therefore $4+6=10$ and $10-6=4$) Represent and use number bonds within 20 Represent and use subtraction facts within 20 Add one-digit and two-digit numbers to 20 , including zero Subtract one-digit and twodigit numbers to 20 , including zero Solve one-step problems that involve addition, subtraction and missing numbers using concrete objects and pictorial representations	Solve problems with addition and subtraction using concrete objects and pictorial representations, including those involving numbers, quantities and measures Solve problems with addition and subtraction applying his/her increasing knowledge of written methods and mental methods where regrouping may be required Recall all number bonds to and within 10 and use these to reason with and calculate bonds to and within 20, recognising other associated additive relationships (e.g. If $7+$ $3=10$, then $17+3=20$; if $7-3=4$, then $17-3$ $=14$; leading to if $14+3$ $=17$, then $3+14=17$, $17-14=3$ and $17-3=$ 14) Recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100 Add and subtract numbers where no regrouping is required, using concrete objects, pictorial representations, and mentally, including a two-digit number and ones Add and subtract numbers using concrete objects, pictorial representations, and	Add and subtract numbers mentally, including a three-digit number and ones Add numbers with up to three digits using the formal method of columnar addition Add and subtract numbers mentally, including a three-digit number and tens Subtract numbers with up to three digits using the formal method of columnar subtraction Add and subtract numbers mentally, including a three-digit number and hundreds Estimate the answer to a calculation and use inverse operations to check answers Solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction	Add numbers with up to four digits using the formal method of columnar addition Estimate and use inverse operations to check answers to a calculation Subtract numbers with up to four digits using the formal method of columnar subtraction Solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why	Add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction) Add and subtract numbers mentally with increasingly large numbers Use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why	Perform mental calculations with mixed operations to carry out calculations involving the four operations Solve multi-step problems in contexts, deciding which operations and methods to use and why e.g. find the change from $£ 20$ for three items that cost $£ 1.24, £ 7.92$ and $£ 2.55$; a roll of material is 6 m long: how much is left when 5 pieces of 1.15 m are cut from the roll?; a bottle of drink is 1.5 litres, how many cups of 175 ml can be filled from the bottle, and how much drink is left? Solve problems involving addition and subtraction Use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy

			mentally, including a two-digit number and tens Add and subtract numbers using concrete objects, pictorial representations, and mentally, including two two-digit numbers Add and subtract numbers using concrete objects, pictorial representations, and mentally, including adding three one-digit numbers Show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems Recall doubles and halves to 20 e.g. knowing that double 2 is 4 , double 5 is 10 and half of 18 is 9 Use estimation to check that his/her answers to a calculation are reasonable e.g. knowing that $48+35$ will be less than 100 Solve missing number problems using addition and subtraction			

	EYFS	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
		Solve one-step problems involving multiplication by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher Solve one-step problems involving division by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher	Recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (\times), division (\div) and equals (=) signs Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot Solve problems involving multiplication and division, using concrete materials and mental methods Solve problems involving multiplication and division, using arrays, repeated addition and multiplication and division facts, including problems in contexts e.g. knowing that $2 \times 7=$ 14 and $2 \times 8=16$, explains that making pairs of socks from	Recall and use multiplication and division facts for the 3,4 and 8 multiplication tables Write and calculate mathematical statements for multiplication and division using the multiplication tables that he/she knows, including for two-digit numbers times onedigit numbers, using mental and progressing to formal written methods Solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects	Recall multiplication and division facts for multiplication tables up to 12×12 Use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers Recognise and use factor pairs and commutativity in mental calculations Multiply two-digit and three-digit numbers by a onedigit number using formal written layout Solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects	Identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers Know and use the vocabulary of prime numbers, prime factors and composite (nonprime) numbers Establish whether a number up to 100 is prime and recall prime numbers up to 19 Multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for twodigit numbers Multiply and divide numbers mentally drawing upon known facts Divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context Multiply and divide whole numbers and those involving decimals by 10,100 and 1000 Recognise and use square numbers and the notation for squared (2) Solve problems involving multiplication and division including using their knowledge	Multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication Divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context Divide numbers up to 4 digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders according to the context Perform mental calculations, including with mixed operations and large numbers Identify common factors, common multiples and prime numbers Use his/her knowledge of the order of operations to carry out calculations involving the four operations Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why Solve problems involving addition, subtraction, multiplication and division Use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy

			15 identical socks will give 7 pairs and one sock will be left Use multiplication and division facts for 2,5 and 10 to make deductions outside known multiplication facts e.g. know that multiples of 5 have one digit of 0 or 5 and use this to reason that 18×5 cannot be 92 as it is not a multiple of 5 Solve word problems involving multiplication and division with more than one step e.g. which has the most biscuits, 4 packets of biscuits with 5 in each packet or 3 packets of biscuits with 10 in each packet Recognise the relationships between addition and subtraction and rewrite addition statements as simplified multiplication statements e.g. $10+$ $10+10+5+5=3 \times$ $10+2 \times 5=4 \times 10$			of factors and multiples, squares and cubes Recognise and use cube numbers and the notation for cubed (3) Solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign Solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates	

	EYFS	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
		Recognise, find and name a half as one of two equal parts of an object, shape or quantity Recognise, find and name a quarter as one of four equal parts of an object, shape or quantity	Recognise, find, name and write fractions $1 / 3$, $1 / 4,2 / 4$ and $3 / 4$ of a length, shape, set of objects or quantity and demonstrate understanding that all parts must be equal parts of the whole Write simple fractions for example, $1 / 2$ of $6=$ 3 and recognise the equivalence of $2 / 4$ and $1 / 2$	Count up and down in tenths; recognise that tenths arise from dividing an object into 10 equal parts and in dividing one-digit numbers or quantities by 10 Recognise, find and write fractions of a discrete set of objects: unit fractions and nonunit fractions with small denominators Recognise and use fractions as numbers: unit fractions and nonunit fractions with small denominators Recognise and show, using diagrams, equivalent fractions with small denominators Add fractions with the same denominator within one whole e.g. $5 / 7+1 / 7=6 / 7$ Subtract fractions with the same denominator within one whole e.g. $6 / 7-1 / 7=5 / 7$ Compare and order unit fractions, and fractions with the same denominators Solve fraction problems Record $1 / 10$ as $0.1,3 / 10$ as 0.3 etc	Recognise and show, using diagrams, families of common equivalent fractions Count up and down in hundredths; recognise that hundredths arise when dividing an object by one hundred and dividing tenths by ten Solve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities, including non-unit fractions where the answer is a whole number Add and subtract fractions with the same denominator Recognise and write decimal equivalents of any number of tenths or hundredths Recognise and write decimal equivalents to $1 / 4,1 / 2,3 / 4$ Find the effect of dividing a one- or twodigit number by 10 and 100 , identifying the value of the digits in the answer as ones, tenths and hundredths Round decimals with one decimal place to the nearest whole number Compare numbers with the same number of decimal places up to two decimal places Solve simple measure and money problems	Compare and order fractions whose denominators are all multiples of the same number Identify and name equivalent fractions of a given fraction, represented visually, including tenths and hundredths Write equivalent fractions of a given fraction, represented visually, including tenths and hundredths Recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements >1 as a mixed number e.g. $2 / 5+4 / 5=6 / 5=$ 11/5 Add and subtract fractions with the same denominator and denominators that are multiples of the same number Multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams Read and write decimal numbers as fractions e.g. 0.71 $=71 / 100,8.09=8+9 /$? Recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents Round decimals with two decimal places to the nearest whole number and to one decimal place Read, write, order and compare numbers with up to three decimal places Solve problems involving number up to three decimal places Recognise the per cent symbol (\%) and understand	Use common factors to simplify fractions; use common multiples to express fractions in the same denomination Compare and order fractions, including fractions > 1 Add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions Multiply simple pairs of proper fractions, writing the answer in its simplest form e.g. $1 / 4 \times 1 / 2=$ 1/8 Divide proper fractions by whole numbers e.g. $1 / 3 \div 2=1 / 6$ Associate a fraction with division and calculate decimal fraction equivalents e.g. know that 7 divided by 21 is the same as $7 / 21$ and that this is equal to $1 / 3$ and e.g. 0.375 is equivalent to 3/8 Identify the value of each digit in numbers given to three decimal places and multiply and divide numbers by 10,100 and 1000 giving answers up to three decimal places Multiply one-digit numbers with up to two decimal places by whole numbers Use written division methods in cases where the answer has up to two decimal places Solve problems which require answers to be rounded to specified degrees of accuracy Recall and use equivalences between simple fractions, decimals and percentages, including in different contexts e.g. one piece of cake that has been cut into 5 equal slices can be expressed as $1 / 5$ or 0.2 or 20% of the whole cake

					decimals to two decimal places	that per cent relates to 'number of parts per hundred', and write percentages as a fraction with denominator 100 , and as a decimal Solve problems which require knowing percentage and decimal equivalents of $1 / 2$, $1 / 4,1 / 5,2 / 5,4 / 5$ and those fractions with a denominator of a multiple of 10 or 25	

EYFS	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Can compare length, weight and capacity	Compare, describe and solve practical problems for lengths and heights e.g. long/short, longer/shorter, tall/short, double/half Compare, describe and solve practical problems for mass/weight e.g. heavy/light, heavier than, lighter than Compare, describe and solve practical problems for capacity and volume e.g. full/empty, more than, less than, half, half full, quarter Compare, describe and solve practical problems for time e.g. quicker, slower, earlier, later Measure and begin to record mass/weight Measure and begin to record capacity and volume Measure and begin to record time (hours, minutes, seconds) Recognise and know the value of different denominations of coins and notes Sequence events in chronological order using language e.g. before and after, next, first, today, yesterday, tomorrow, morning, afternoon and evening Recognise and use language relating to dates, including days of the week, weeks, months and years Tell the time to the hour and half past the hour and draw the hands on a clock face to show these times Measure and begin to record length/height	Choose and use appropriate standard units to estimate and measure length/height in any direction (m / cm); mass (kg/g); temperature (${ }^{\circ}$ C); capacity (litres $/ \mathrm{ml}$) to the nearest appropriate unit, using rulers, scales, thermometers and measuring vessels Compare and order lengths, mass, volume/capacity and record the results using >, < and = Recognise and use symbols for pounds ($£$) and pence (p); combine amounts to make a particular value Find different combinations of coins that equal the same amounts of money Solve simple problems in a practical context involving addition and subtraction of money of the same unit, including giving change Compare and sequence intervals of time Tell and write the time to five minutes, including quarter past/to the hour and draw the hands on a clock face to show these times Remember the number of minutes in an hour and the number of hours in a day Read scales in divisions of ones, twos, fives and tens Read scales where not all numbers on the scale are given and estimate points in between Read the time on a clock to the nearest 15 minutes	Measure, compare, add and subtract: lengths ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$); mass (kg/g); volume/capacity ($1 / \mathrm{ml}$) Measure the perimeter of simple 2-D shapes Add and subtract amounts of money to give change, using both f and p in practical contexts Tell the time from an analogue clock, including using Roman numerals from I to XII, and 12hour and 24 -hour clocks Write the time using an analogue clock, including using Roman numerals from I to XII, and 12hour and 24 -hour clocks Estimate and read time with increasing accuracy to the nearest minute; record and compare time in terms of seconds, minutes and hours; use vocabulary such as o'clock, a.m./p.m., morning, afternoon, noon and midnight Know the number of seconds in a minute and the number of days in each month, year and leap year Compare durations of events e.g. to calculate the time taken by particular events or tasks	Convert between different units of measure e.g. kilometre to metre; hour to minute Measure and calculate the perimeter of a rectilinear figure (including squares) in centimetres and metres Find the area of rectilinear shapes by counting squares Estimate, compare and calculate different measures, including money in pounds and pence Read, write and convert time between analogue and digital 12 - and 24 -hour clocks Solve problems involving converting from hours to minutes; minutes to seconds; years to months; weeks to days	Convert between different units of metric measure (for example, kilometre and metre; centimetre and metre; centimetre and millimetre; gram and kilogram; litre and millilitre) Understand and use approximate equivalences between metric units and common imperial units such as inches, pounds and pints Measure and calculate the perimeter of composite rectilinear shapes in centimetres and metres Calculate and compare the area of rectangles (including squares), and including using standard units, square centimetres $\left(\mathrm{cm}^{2}\right)$ and square metres $\left(\mathrm{m}^{2}\right)$ and estimate the area of irregular shapes Estimate volume e.g. using $1 \mathrm{~cm}^{3}$ blocks to build cuboids (including cubes) and capacity e.g. using water Solve problems involving converting between units of time Use all four operations to solve problems involving measure e.g. length, mass, volume, money using decimal notation, including scaling	Solve problems involving the calculation and conversion of units of measure, using decimal notation up to three decimal places where appropriate Use, read, write and convert between standard units, converting measurements of length, mass, volume and time from a smaller unit of measure to a larger unit, and vice versa, using decimal notation to up to three decimal places Convert between miles and kilometres Recognise that shapes with the same areas can have different perimeters and vice versa Recognise when it is possible to use formulae for area and volume of shapes Calculate the area of parallelograms and triangles Calculate, estimate and compare volume of cubes and cuboids using standard units, including cubic centimetres $\left(\mathrm{cm}^{3}\right)$ and cubic metres $\left(\mathrm{m}^{3}\right)$, and extending to other units e.g. mm^{3} and km^{3}

	EYFS	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
0 0 $\frac{0}{0}$ $\frac{\pi}{n}$ 4 0 0 0 $\frac{1}{0}$ 0 0 0	Investigates composing and decomposing shapes and recognises a shape can have other shapes within it, just as numbers can	Recognise and name common 2-D shapes e.g. rectangles (including squares), circles and triangles Recognise and name common 3-D shapes e.g. cuboids (including cubes), pyramids and spheres	Identify and describe the properties of 2-D shapes, including the number of sides and line symmetry in a vertical line Identify and describe the properties of 3-D shapes, including the number of edges, vertices and faces Name some common 2-D and 3-D shapes from a group of shapes or from pictures of the shapes and describe some of their properties (e.g. triangles, rectangles, squares, circles, cuboids, cubes, pyramids and spheres) Identify 2-D shapes on the surface of 3-D shapes e.g. a circle on a cylinder and a triangle on a pyramid Compare and sort common 2-D and 3-D shapes and everyday objects describing similarities and differences e.g. find 2 different 2-D shapes that only have one line of symmetry; that a cube and a cuboid have the same number of edges, faces and vertices and describe what is different about them	Draw 2-D shapes and make 3-D shapes using modelling materials; recognise 3-D shapes in different orientations and describe them Recognise angles as a property of shape or a description of a turn Identify right angles and idenitfy whether other angles are greater or less than a right angle Recognise that two right angles make a half turn, three make three quarters of a turn and four a complete turn Identify horizontal and vertical lines and pairs of perpendicular and parallel lines	Compare and classify geometric shapes, including quadrilaterals and triangles, based on their properties and sizes Identify acute and obtuse angles and compare and order angles up to two right angles by size Identify lines of symmetry in 2-D shapes presented in different orientations Complete a simple symmetric figure with respect to a specific line of symmetry Begin to recognise where angles are greater than two right angles. Know the term straight angle referring to two right angles together	Identify 3-D shapes, including cubes and other cuboids, from 2- D representations Know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles Draw given angles, and measure them in degrees (${ }^{\circ}$) Identify angles at a point and one whole turn (total 360°) Identify angles at a point on a straight line and $1 / 2$ a turn (total 180°) Identify other multiples of 90° Use the properties of rectangles to deduce related facts and find missing lengths and angles Distinguish between regular and irregular polygons based on reasoning about equal sides and angles	Draw 2-D shapes using given dimensions and angles Recognise, describe and build simple 3-D shapes, including making nets Compare and classify geometric shapes based on their properties and sizes and find unknown angles in any triangles, quadrilaterals, and regular polygons Illustrate and name parts of circles, including radius, diameter and circumference and know that the diameter is twice the radius Recognise angles where they meet at a point, are on a straight line, or are vertically opposite, and find missing angles

EYFS	Year 1

Can select, rotate and manipulate shapes in order to develop spatial reasoning skills Is able to continue,
copy and create
repeating patterns

Describe position,
direction and movement, including whole, half, quarter and three-quarter turns

| | Year 2 |
| :--- | :--- | combinations of mathematical objects in patterns and sequences

Use mathematical vocabulary to describe position, direction and movement, including movement in a straight line and distinguishing between rotation as a turn and in terms of right angles for quarter, half and three-quarter turns (clockwise and anticlockwise)

Year 3	Year 4
	Describe positions on

a 2-D grid as coordinates in the first quadrant Describe movements between positions as translations of a given unit to the left/right and up/down Plot specified points and draw sides to complete a given polygon

Statistics

EYFS	Year 1	Year 2
		Interpret and construct simple pictograms, tally charts, block diagrams and simple tables Ask and answer simple questions by counting the number of objects in each category and sorting the categories by quantity Ask and answer questions about totalling and comparing categorical data

Year 6

Year 5
Solve comparison

Interpret and construct pie charts and line graphs and use these to solve problems Calculate and interpret the mean as an average

	EYFS	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
							Solve problems involving the relative sizes of two quantities where missing values can be found by using integer multiplication and division facts e.g. find 7/9 of 108 Solve problems involving the calculation of percentages e.g. of measures, and such as 15% of 360 and the use of percentages for comparison Solve problems involving similar shapes where the scale factor is known or can be found Solve problems involving unequal sharing and grouping using knowledge of fractions and multiples

	EYFS	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
$\begin{aligned} & \frac{0}{0} \\ & \frac{0}{0} \\ & \frac{0}{\mathbb{Q}} \end{aligned}$							Use simple formulae e.g. perimeter of a rectangle or area of a triangle Generate and describe linear number sequences Express missing number problems algebraically Find pairs of numbers that satisfy an equation with two unknowns Enumerate possibilities of combinations of two variables

